翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

coherent risk measure : ウィキペディア英語版
coherent risk measure

In the fields of Actuarial Science and financial economics there are a number of ways that risk can be defined; to clarify the concept theoreticians have described a number of properties that a risk measure might or might not have. A coherent risk measure is a function \varrho that satisfies properties of monotonicity, sub-additivity, homogeneity, and translational invariance.
==Properties==
Consider a random outcome X viewed as an element of a linear space \mathcal of measurable functions, defined on an appropriate probability space. A functional \varrho : \mathcal\R \cup \ is said to be coherent risk measure for \mathcal if it satisfies the following properties:
; Normalized
: \varrho(0) = 0
That is, the risk of holding no assets is zero.
; Monotonicity
: \mathrm\; Z_1,Z_2 \in \mathcal \;\mathrm\; Z_1 \leq Z_2 \; \mathrm ,\; \mathrm \; \varrho(Z_1) \geq \varrho(Z_2)
That is, if portfolio Z_2 always has better values than portfolio Z_1 under almost all scenarios then the risk of Z_2 should be less than the risk of Z_1. E.g. If Z_1 is an in the money call option (or otherwise) on a stock, and Z_2 is also an in the money call option with a lower strike price.
; Sub-additivity
: \mathrm\; Z_1,Z_2 \in \mathcal ,\; \mathrm\; \varrho(Z_1 + Z_2) \leq \varrho(Z_1) + \varrho(Z_2)
Indeed, the risk of two portfolios together cannot get any worse than adding the two risks separately: this is the diversification principle.
; Positive homogeneity
: \mathrm\; \alpha \ge 0 \; \mathrm \; Z \in \mathcal ,\; \mathrm \; \varrho(\alpha Z) = \alpha \varrho(Z)
Loosely speaking, if you double your portfolio then you double your risk.
; Translation invariance
If A is a deterministic portfolio with guaranteed return a and Z \in \mathcal then
: \varrho(Z + A) = \varrho(Z) - a
The portofolio A is just adding cash a to your portfolio Z. In particular, if a=\varrho(Z) then \varrho(Z+A)=0.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「coherent risk measure」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.